skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marcum, Jesse C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The vibrational structure and binding motifs of vanadium cation-ethane clusters, V(+)(C2H6)n, for n = 1 – 4 are probed using infrared photodissociation spectroscopy in the C-H stretching region (2550 – 3100 cm-1). Comparison of spectra to scaled harmonic frequency spectra obtained using density functional theory suggest that ethane exhibits two primary binding motifs when interacting with the vanadium cation, an end-on 𝜂2 configuration and a side-on configuration. The lower-energy side-on configuration predominates in smaller clusters, but the end-on configuration becomes important for larger clusters as it helps to maintain a roughly square planar geometry about the central vanadium. Proximate C-H bonds exhibit elongation and large red-shifts when compared to bare ethane, particularly in the case of the side-on isomer, which are underestimated by scaled harmonic frequency calculations, demonstrating initial effects of C-H bond activation. 
    more » « less